Home    |Web Directory    |Metasearch    |Message Boards    |Classified Ads|

Web Directory

Home

Web Directory

Metasearch

Message Boards

Classified Ads








Polyominoes (76)

Editor's Picks:

http://www.xs4all.nl/~gp/PolyominoSolver/Polyomino.html
» Gerard's Universal Polyomino Solver Open in a new browser windowEditor's Pick
   Computes from 1 to 3.38 billion solutions with graphic display to each of the 60+ problems of different sizes and shapes. Pieces vary from pentominoes to heptominoes, sometimes in combination. Table summarizes properties and example solution of each probl
   http://www.xs4all.nl/~gp/PolyominoSolver/Polyomino.html


Sites:

http://www.ieeta.pt/~tos/animals.html
» Animal Enumerations Open in a new browser window
   Enumeration on regular tilings of the Euclidean and Hyperbolic planes.
   http://www.ieeta.pt/~tos/animals.html
http://www.geom.uiuc.edu/~summer95/gardberg/pent.html
» Anna's Pentomino Page Open in a new browser window
   Anna Gardberg makes pentominoes out of sculpey and agate.
   http://www.geom.uiuc.edu/~summer95/gardberg/pent.html
http://www.eldar.org/~problemi/pfun/blocked.html
» Blocking Polyominos Open in a new browser window
   Rodolfo Kurchan searches the smallest polyomino such that a particular number of copies can form a blocked pattern. With solutions.
   http://www.eldar.org/~problemi/pfun/blocked.html
http://sti.br.inter.net/rkyrmse/canonic-e.htm
» Canonical Polygons Open in a new browser window
   Ronald Kyrmse investigates grid polygons in which all side lengths are one or sqrt(2).
   http://sti.br.inter.net/rkyrmse/canonic-e.htm
http://mathpuzzle.com/eternity.html
» Christopher Monckton's Eternity Puzzle Open in a new browser window
   Rules, the solution by Alex Selby and Oliver Riordan, other resources and links. The puzzle is made up of 209 pieces of polydrafters, each one is a combination of 12-30/60/90 triangles.
   http://mathpuzzle.com/eternity.html
http://www.cs.uwaterloo.ca/journals/JIS/HICK2/chcp.html
» Counting Horizontally Convex Polyominoes Open in a new browser window
   Journal of Integer Sequences, Vol. 2 (1999), Article 99.1.8. Defines and counts horizontal convexity.
   http://www.cs.uwaterloo.ca/journals/JIS/HICK2/chcp.html
http://math.rice.edu/~lanius/Lessons/Polys/poly1.html
» Cynthia Lanius' Lesson: Polyominoes Introduction Open in a new browser window
   From tetris to hexominoes, Cynthia explains them in color.
   http://math.rice.edu/~lanius/Lessons/Polys/poly1.html
http://www-cs-faculty.stanford.edu/~knuth/papers/dancing-color.ps.gz
» Dancing Links Open in a new browser window
   Don Knuth discusses implementation details of polyomino search algorithms (compressed PostScript format).
   http://www-cs-faculty.stanford.edu/~knuth/papers/dancing-color.ps.gz
http://www.archduke.demon.co.uk/eternity/index.html
» Eternity Page Open in a new browser window
   Alex Selby's page with a description of his solution method, with illustrations in .png and .pdf files.
   http://www.archduke.demon.co.uk/eternity/index.html
http://delta.cs.cinvestav.mx/~mcintosh/comun/flexagon/flexagon.html
» Flexagons Open in a new browser window
   Conrad and Hartline's 1962 article on Flexagons.
   http://delta.cs.cinvestav.mx/~mcintosh/comun/flexagon/flexagon.html
http://www.gamepuzzles.com/
» Gamepuzzles Open in a new browser window
   Polyomino and polyform games and puzzles manufactured by Kadon Enterprises Inc.
   http://www.gamepuzzles.com/
http://www.xs4all.nl/~gp/pentomino.html
» Gerard's Pentomino Page Open in a new browser window
   Illustrates the 12 shapes. symmetrical combinations.
   http://www.xs4all.nl/~gp/pentomino.html
http://mathworld.wolfram.com/Golygon.html
» Golygons by Mathworld Open in a new browser window
   What they are, and how to find them.
   http://mathworld.wolfram.com/Golygon.html
http://delta.cs.cinvestav.mx/~mcintosh/oldweb/pflexagon.html
» Harold McIntosh's Flexagon Papers Open in a new browser window
   Including copies of the original 1962 Conrad-Hartline papers. Abstract, html-pages, or .pdf documents.
   http://delta.cs.cinvestav.mx/~mcintosh/oldweb/pflexagon.html
http://www.picciotto.org/math-ed/puzzles/
» Henri Picciotto's Geometric Puzzles in the Classroom Open in a new browser window
   Polyform puzzle lessons for math educators to use with their students, including polyominoes, supertangrams, and polyarcs.
   http://www.picciotto.org/math-ed/puzzles/
http://www.plunk.org/~hatch/HyperbolicTesselations/
» Hyperbolic Planar Tessellations Open in a new browser window
   Don Hatch's page on hyperbolic tesselations with numerous illustrations.
   http://www.plunk.org/~hatch/HyperbolicTesselations/
http://www.theory.csc.uvic.ca/~cos/inf/misc/PentInfo.html
» Information on Pentomino Puzzles Open in a new browser window
   At the Combinatorial Object Server.
   http://www.theory.csc.uvic.ca/~cos/inf/misc/PentInfo.html
http://www.thery.free.fr/index.php?option=com_content&task=view&id=18&Itemid=44
» Java pentominoes Open in a new browser window
   Thery families web site with pentomino solver. (English/French)[Java].
   http://www.thery.free.fr/index.php?option=com_content&task=view&id=18&Itemid=44
http://www.borderschess.org/KTtess.htm
» Knight's Move Tessellations Open in a new browser window
   Dan Thomasson looks at tesselations with numerous unexpected shapes traced out by knight moves.
   http://www.borderschess.org/KTtess.htm
http://www.ericharshbarger.org/lego/pentominoes.html
» Lego Pentominos Open in a new browser window
   Eric Harshbarger. This puzzle maker says that the hard part was finding legos in enough different colors.
   http://www.ericharshbarger.org/lego/pentominoes.html
http://www.basic.northwestern.edu/g-buehler/pentominoes/
» Logical Art and the Art of Logic Open in a new browser window
   Pentomino pictures, software and other resources by Guenter Albrecht-Buehler.
   http://www.basic.northwestern.edu/g-buehler/pentominoes/
http://mathforum.org/wagon/spring97/p826.html
» Mathforum : Minimal Domino Tiling Open in a new browser window
   Tiling a square without cutting it into two.(Problem of the week 826, Spring 1997)
   http://mathforum.org/wagon/spring97/p826.html
http://mathforum.org/wagon/spring98/p856.html
» Mathforum : Tiling Rectangles from Ell Open in a new browser window
   Stan Wagon asks which rectangles can be tiled with an ell-tromino.
   http://mathforum.org/wagon/spring98/p856.html
http://mathforum.org/pom/project2.95.html
» Mathforum : a Pentomino Problem Open in a new browser window
   Geometry Forum: Lists the pentominoes; fold them to form a cube; play a pentomino game. (project of the month, 1995)
   http://mathforum.org/pom/project2.95.html
http://www.maths.soton.ac.uk/EMIS/journals/BAG/vol.35/no.1/b35h1har.abs
» Maximum Convex Hulls of Connected Systems of Segments and of Polyominoes Open in a new browser window
   Bezdek, Brass, and Harborth. Abstract to an article which places bounds on the convex area needed to contain a polyomino. (Contributions to Algebra and Geometry Volume 35 (1994), No. 1, 37-43.)
   http://www.maths.soton.ac.uk/EMIS/journals/BAG/vol.35/no.1/b35h1har.abs
http://www.vicher.cz/puzzle/
» Miroslav Vicher's Puzzles Pages Open in a new browser window
   Polyforms (polyominoes, and polyiamonds) graphics, tables and resources (English/Czech).
   http://www.vicher.cz/puzzle/
http://www.math.ucf.edu/~reid/Polyomino/index.html
» My Polyomino Page Open in a new browser window
   Michael Reid's numerous articles on polyominoes and tilnig, with references and links.
   http://www.math.ucf.edu/~reid/Polyomino/index.html
http://www.stetson.edu/~efriedma/packing.html
» Packing Shapes Open in a new browser window
   Erich Friedman's Introduction to a variety of packing and tiling problems.
   http://www.stetson.edu/~efriedma/packing.html
http://www.stetson.edu/~efriedma/mathmagic/0903.html
» Pairwise Touching Hypercubes Open in a new browser window
   Erich Friedman's problem of the month asks how to partition the unit cubes of an a*b*c-unit rectangular box into as many connected polycubes as possible with a shared face between every pair of polycubes. Answers provided.
   http://www.stetson.edu/~efriedma/mathmagic/0903.html
http://www.virtu-software.com/PentoMania/
» Pento-Mania Open in a new browser window
   Pentomino based puzzle game lets children solve and create geometric puzzles. Win32 software, try or buy.
   http://www.virtu-software.com/PentoMania/
http://www.cs.cmu.edu/~desilva/pento/pento.html
» Pentomino Applet Open in a new browser window
   Rujith de Silva's applet puzzle offers games of four different sized rectangles. Source code available. [Java]
   http://www.cs.cmu.edu/~desilva/pento/pento.html
http://www.xprt.net/~munizao/polycover/
» Pentomino Covers Open in a new browser window
   Problems on minimal covers.
   http://www.xprt.net/~munizao/polycover/
http://www.scottkim.com/inversions/gallery/golomb.html
» Pentomino Dissection of a Square Annulus Open in a new browser window
   From Scott Kim's Inversions Gallery.
   http://www.scottkim.com/inversions/gallery/golomb.html
http://membres.lycos.fr/pentomino/index.html
» Pentomino Homepage Open in a new browser window
   Lorente Philippe's site describes the building blocks, nomenclature, solutions, and numerous games. (French/English)
   http://membres.lycos.fr/pentomino/index.html
http://www.pentomino.tvnet.hu/
» Pentomino HungarIQa Open in a new browser window
   Kati presents a pentomino puzzle using poly-rhombs instead of poly-squares. [English/French/German/Hungarian]
   http://www.pentomino.tvnet.hu/
http://www.exi-online.de/html/eintritt_e.html
» Pentomino Puzzles. Open in a new browser window
   Pentomino solver with download. Windows 95 and later required. [German/English]
   http://www.exi-online.de/html/eintritt_e.html
http://abasmith.co.uk/pentanomes/pentanomes.html
» Pentomino Relationships Open in a new browser window
   Symmetries in the families of rectangular solutions.
   http://abasmith.co.uk/pentanomes/pentanomes.html
http://www.andrews.edu/~calkins/math/pentos.htm
» Pentominoes Open in a new browser window
   Expository paper by R. Bhat and A. Fletcher. Covers pre-Golomb discoveries. the triplication problem and other aspects.
   http://www.andrews.edu/~calkins/math/pentos.htm
http://www.cimt.plymouth.ac.uk/resources/puzzles/pentoes/pentoint.htm
» Pentominoes : an Introduction Open in a new browser window
   Centre for Innovation in Mathematics Teaching presents colourful examples of many tiling problems, duplication, triplication, etc.
   http://www.cimt.plymouth.ac.uk/resources/puzzles/pentoes/pentoint.htm
http://www.mathematik.ch/anwendungenmath/pento/
» Pentominos Open in a new browser window
   B. Berchtold's applet helps tile a 6x10 rectangle. [German]
   http://www.mathematik.ch/anwendungenmath/pento/
http://math.hws.edu/xJava/PentominosSolver/
» Pentominos Puzzle Solver Open in a new browser window
   David Eck's graphical solver applet uses recursive technique. Source code available. [Java]
   http://math.hws.edu/xJava/PentominosSolver/
http://userpages.monmouth.com/~colonel/polycur.html
» Polyform Curiosities Open in a new browser window
   Topics include exclusion, compatibility, and wallpaper. Includes examples and charts.
   http://userpages.monmouth.com/~colonel/polycur.html
http://web.inter.nl.net/users/C.Eggermont/Links.new/Puzzles/Polyforms.and.dissection/index.noframe.shtml
» Polyform and Dissection Puzzle Links Open in a new browser window
   Christian Eggermont's link page.
   http://web.inter.nl.net/users/C.Eggermont/Links.new/Puzzles/Polyforms.and.dissection/index.noframe.shtml
http://www.mathpuzzle.com/polyom.htm
» Polyforms Open in a new browser window
   Ed Pegg Jr.'s site has pages on tiling, packing, and related problems involving polyominos, polyiamonds, polyspheres, and related shapes.
   http://www.mathpuzzle.com/polyom.htm
http://freshmeat.net/projects/hextk/
» Polygon Puzzle Open in a new browser window
   Open source polyomino and polyform placement solitaire game.
   http://freshmeat.net/projects/hextk/
http://www.monmouth.com/~colonel/xpoly/xpoly.html
» Polyiamond Exclusion Open in a new browser window
   Colonel Sicherman asks what fraction of the triangles need to be removed from a regular triangular tiling of the plane, in order to make sure that the remaining triangles contain no copy of a given polyiamond.
   http://www.monmouth.com/~colonel/xpoly/xpoly.html
http://www.mathpages.com/home/kmath039.htm
» Polyomino Enumeration Open in a new browser window
   K. S. Brown examines the number of polyominoes up to order 12 for various cases involving rotation or reflections. Equations linking the cases are proposed.
   http://www.mathpages.com/home/kmath039.htm
http://www.srcf.ucam.org/~jsm28/tiling/
» Polyomino and Polyhex Tiling Open in a new browser window
   Joseph Myer's tables of polyominoes and of polyomino tilings, in Postscript format.
   http://www.srcf.ucam.org/~jsm28/tiling/
http://members.tripod.com/~modularity/pol.htm
» Polyominoes Open in a new browser window
   Describes a numerical invariant that can be used to classify polyominoes.
   http://members.tripod.com/~modularity/pol.htm
http://homepages.cwi.nl/~jankok/etc/Polyomino.html
» Polyominoes: Theme and Variations Open in a new browser window
   Jankok presents information about filling rectangles, other polygons, boxes, etc., with dominoes, trominoes, tetrominoes, pentominoes, solid pentominoes, hexiamonds, and whatever else people have invented as variations of a theme. References included.
   http://homepages.cwi.nl/~jankok/etc/Polyomino.html
http://www.uwgb.edu/dutchs/symmetry/polypoly.htm
» Polypolygon Tilings Open in a new browser window
   S. Dutch discusses polyominoes, poliamonds, and polypolygons with special attention to tiling characteristics.
   http://www.uwgb.edu/dutchs/symmetry/polypoly.htm
http://www.math.ucf.edu/~reid/Polyomino/14omino02_rect.html
» Primes of a 14-omino Open in a new browser window
   Michael Reid shows that a 3x6 rectangle with a 2x2 bite removed can tile a (much larger) rectangle. It is open whether it can do this using an odd number of copies.
   http://www.math.ucf.edu/~reid/Polyomino/14omino02_rect.html
http://www.eldar.org/~problemi/pfun/pfun.html
» Puzzle Fun Open in a new browser window
   Newsletter edited by Rodolfo Kurchan about pentominoes and other math problems.
   http://www.eldar.org/~problemi/pfun/pfun.html
http://www.eklhad.net/polyomino/
» Rectifiable Polyomino Open in a new browser window
   Karl Dahlke explains and demonstrates tiling. Includes C-program source.
   http://www.eklhad.net/polyomino/
http://diamond.boisestate.edu/~sulanke/PAPER1/PergolaSulanke/PergolaSulanke.html
» Schröder Triangles, Paths, and Parallelogram Polyominoes Open in a new browser window
   A paper on their enumeration by Elisa Pergola and Robert A. Sulanke.
   http://diamond.boisestate.edu/~sulanke/PAPER1/PergolaSulanke/PergolaSulanke.html
http://www.moerig.com/somatic/
» Somatic Open in a new browser window
   A solver for arbitrary polyomino and polycube puzzles. Binary code and source downloads available.
   http://www.moerig.com/somatic/
http://www.lrdev.com/lr/c/sqfig.html
» Sqfig and Sqtile Open in a new browser window
   Eric Laroche presents computer programs for generating polyominoes and polyomino tilings. Includes source codes in C, and binaries.
   http://www.lrdev.com/lr/c/sqfig.html
http://homepage2.nifty.com/yuki-tani/index_e.html
» Taniguchi's Programs Open in a new browser window
   Windows software to solve polyiamond and sliding block puzzles.
   http://homepage2.nifty.com/yuki-tani/index_e.html
http://www.ics.uci.edu/~eppstein/junkyard/polyomino.html
» The Geometry Junkyard: Polyominoes Open in a new browser window
   Numerous links, sorted alphabetically.
   http://www.ics.uci.edu/~eppstein/junkyard/polyomino.html
http://kevingong.com/Polyominoes/
» The Mathematics of Polyominoes Open in a new browser window
   Kevin Gong offers download of his polyominoes games shareware for Windows and Mac. 100 boards are included. A Java version is under development.
   http://kevingong.com/Polyominoes/
http://www.gef.free.fr/pento.html
» The Pentomino Dictionary by Gilles Esposito-Farèse Open in a new browser window
   English words that can be written using the pentomino name letters FILNPTUVWXYZ and other related curiosities, including a homage to Georges Perec. (English/French).
   http://www.gef.free.fr/pento.html
http://www.recmath.com/PolyPages/
» The Poly Pages Open in a new browser window
   About various polyforms - polyominoes, polyiamonds, polycubes, and polyhexes.
   http://www.recmath.com/PolyPages/
http://www.combinatorics.org/Volume_3/Abstracts/v3i1r27.html
» The Three Dimensional Polyominoes of Minimal Area Open in a new browser window
   L. Alonso and R. Cert's abstract of a paper published in vol. 3 of the Elect. J. Combinatorics. Full paper available in different formats (.pdf, postscript, tex etc).
   http://www.combinatorics.org/Volume_3/Abstracts/v3i1r27.html
http://www.fam-bundgaard.dk/SOMA/SOMA.HTM
» Thorleif's SOMA Page Open in a new browser window
   SOMA puzzle site with graphics, newsletter and software.
   http://www.fam-bundgaard.dk/SOMA/SOMA.HTM
http://xprt.net/~munizao/mathrec/pentcol.html
» Three Nice Pentomino Coloring Problems Open in a new browser window
   Alexandre Owen Muñiz presents the Icehouse set which lends itself to different polyomino coloring games.
   http://xprt.net/~munizao/mathrec/pentcol.html
http://www.math.ucf.edu/~reid/Research/Halfstrip/
» Tiling Rectangles and Half Strips with Congruent Polyominoes Open in a new browser window
   Michael Reid's abstract of paper in the "Journal of Combinatorial Theory, Series A".
   http://www.math.ucf.edu/~reid/Research/Halfstrip/
http://www.math.ufl.edu/~squash/tilingstuff.html
» Tiling Stuff Open in a new browser window
   Jonathan King examines problems of determining whether a given rectangular brick can be tiled by certain smaller bricks. Includes numerous articles in .pdf format.
   http://www.math.ufl.edu/~squash/tilingstuff.html
http://www.math.ucf.edu/~reid/Research/Eight/
» Tiling a Square With Eight Congruent Polyominoes Open in a new browser window
   Michael Reid's abstract of a paper in the "Journal of Combinatorial Theory, Series A".
   http://www.math.ucf.edu/~reid/Research/Eight/
http://www2.math.uic.edu/~fields/puzzle/puzzle.html
» Tiling of Pythagorean Triplets Open in a new browser window
   Joe Fields suggests that L-decomposition of squares of Pythagorean triplets could always be tiled.
   http://www2.math.uic.edu/~fields/puzzle/puzzle.html
http://www.math.ucf.edu/~reid/Research/Notched/
» Tiling with Notched Cubes Open in a new browser window
   Robert Hochberg and Michael Reid exhibit an unboxable reptile: a polycube that can tile a larger copy of itself, but can't tile any rectangular block. Abstract of article to "Discrete Mathematics".
   http://www.math.ucf.edu/~reid/Research/Notched/
http://www.angelfire.com/mn3/anisohedral/unbalanced.html
» Unbalanced Anisohedral Tiling Open in a new browser window
   Joseph Myers and John Berglund found a polyhex that must be placed in two different ways in a tiling of a plane, such that one placement occurs twice as often as the other.
   http://www.angelfire.com/mn3/anisohedral/unbalanced.html
http://www.geom.uiuc.edu/java/tetris/
» Unbeatable Tetris Open in a new browser window
   Java applet demonstres that this tetromino-packing game is a forced win for the side dealing the tetrominoes. Complete with mathematical proof. [Java]
   http://www.geom.uiuc.edu/java/tetris/
http://www.apperceptual.com/tesseract.html
» Unfolding the Tesseract Open in a new browser window
   Peter Turney lists the 261 polycubes that can be folded in four dimensions to form the surface of a hypercube, and provides animations of the unfolding process.
   http://www.apperceptual.com/tesseract.html

This category needs an editor

Last Updated: 2007-01-02 17:54:38





Help build the largest human-edited directory on the web.
Submit a Site - Open Directory Project - Become an Editor

The content of this directory is based on the Open Directory and has been modified by GoSearchFor.com

Free previews by Thumbshots.org